

Results from Measuring the Performance of the NAS

Benchmarks on the Current Generation of
Parallel Computers and Observations

Drawn from these Measurements

by Daniel Pressel

ARL-RP-96 May 2005

A reprint from the Users Group Conference, Williamsburg, VA, 7–11 June 2004.

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-RP-96 May 2005

Results from Measuring the Performance of the NAS
Benchmarks on the Current Generation of

Parallel Computers and Observations
Drawn from these Measurements

Daniel Pressel

Computational and Information Sciences Directorate, ARL

A reprint from the Users Group Conference, Williamsburg, VA, 7–11 June 2004.

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

May 2005
2. REPORT TYPE

Reprint
3. DATES COVERED (From - To)

11 October 2003–1 June 2004
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Results from Measuring the Performance of the NAS Benchmarks on the Current
Generation of Parallel Computers and Observations Drawn from these
Measurements
 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5U03CL
5e. TASK NUMBER

6. AUTHOR(S)

Daniel Pressel

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-RP-96

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

A reprint from the Users Group Conference, Williamsburg, VA, 7–11 June 2004.

14. ABSTRACT

The NAS Division at NASA Ames Research Center has developed a highly respected and widely used set of benchmarks for
parallel computers. These benchmarks are based on the needs of computational fluid dynamics applications, but appear to
have relevance to other disciplines as well. Unfortunately, NAS last published a collection of results for a wide range of
systems in November of 1997. Given the rapid level of change in the field of computers in general, and high performance
parallel computing, it seemed appropriate to try and fill in some of the gaps. As such, the major computational assets of the
ARL-MSRC are being benchmarked, with the intent to publish the results on an ARL website. While making these
measurements, several observations and conclusions were drawn. These observations and conclusions will be discussed at
length in this document.

15. SUBJECT TERMS

high performance computing, benchmarking

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Daniel Pressel

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

 16 19b. TELEPHONE NUMBER (Include area code)

(410) 278-9151
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Results from Measuring the Performance of the NAS Benchmarks on
the Current Generation of Parallel Computers and Observations Drawn

from these Measurements

Daniel Pressel
U.S. Army Research Laboratory

 dmpresse@arl.army.mil

Abstract

The NAS Division at NASA Ames Research Center has developed a highly respected and widely used
set of benchmarks for parallel computers. These benchmarks are based on the needs of computational
fluid dynamics applications, but appear to have relevance to other disciplines as well. Unfortunately,
NAS last published a collection of results for a wide range of systems in November of 1997. Given
the rapid level of change in the field of computers in general, and high performance parallel
computing, it seemed appropriate to try and fill in some of the gaps. As such, the major computational
assets of the
ARL-MSRC are being benchmarked, with the intent to publish the results on an ARL website. While
making these measurements, several observations and conclusions were drawn. These observations
and conclusions will be discussed at length in this document.

1. Introduction

The NAS Division at NASA Ames Research Center has developed a highly respected and widely used
set of benchmarks for parallel computers [1]. These benchmarks are based on the needs of
computational fluid dynamics applications, but appear to have relevance to other disciplines as well.
In [2] a subset of the NAS benchmarks (BT, CG, LU, and SP) were compared to the Linpack Parallel
benchmark [3], Stream benchmark [4], and peak processor speed (in MFLOPS). It was found that
collectively the subset of the NAS benchmarks were the best predictors of the performance of
applications in Computational Chemistry and Material Science, Climate/Weather/Ocean Modeling and
Simulation, Computational Fluid Dynamics, and Computational Structural Mechanics when using 1-
1152 processors on 15 different system types from 6 different vendors. Unfortunately, NAS has not
published a collection of results for a wide range of systems since November of 1997. Given the rapid
level of change in the field of computers in general, and high performance parallel computing, it
seemed appropriate to try and fill in some of the gaps.

At the U.S. Army Research Laboratory – Major Shared Resource Center (ARL-MSRC), a number of
moderate-to-large sized systems from SGI, IBM, and most recently Linux Networx are currently in
use. Additionally, three new systems from these vendors, including two 2000+ processor clusters are
due to come on line in the next few months. As such, it seemed as though a good starting point would
be to benchmark the distinct major systems at the ARL-MSRC, with the intent to publish the results on
an ARL website. While making these measurements, several observations were drawn. These
observations and conclusions will be discussed at length in this document. They are grouped into the
following categories:

• The effect that node configuration has on performance.
• System usage policies and performance.
• Fine grain parallelism, message passing latency, and performance.

This project was made possible by a grant of computer time from the DoD High Performance
Computing Modernization Program.

2. The effect that node configuration has on performance

Almost all High Performance Computer (HPC) systems are now made with one or more levels of
cache memory sitting between the processor and main memory. The purpose of the cache memory is
to bridge the performance gap between the bandwidth of main memory (including the bandwidth of
the node’s interconnect) and the much greater ability of the processor to initiate load and store
instructions. Many of the systems are equipped with a prefetching mechanism that can improve a
processor’s ability to stream data from main memory into the processor (usually via the caches). It is
important to remember that this mechanism is still limited by the available bandwidth, and may have
additional limitations as well. A more complete description of caches and prefetching can be found in
[5] and [6].
Table 1 demonstrates how the available per processor memory bandwidth varies depending on the
design of the system. It should be noted that these numbers were not chosen to represent any one
system, but are generally representative of the current state of the art.

It should be noted that for systems with a relatively limited per node memory bandwidth, either adding
support for prefetching and/or increasing the cache line size will be of limited benefit. Furthermore,
adding additional processors to the node may have limited effect on performance. In fact, since a
multiprocessor operating system kernel will in general incur a greater level of overhead, when going
from a single processor node to a dual processor node, one might actually lose performance on a per
node basis. However, if the application was well tuned for large caches, and if the cache is large
enough relative to the amount of work assigned to the processor, then the application may no longer be
memory bandwidth limited. A prime example of where this worked can be seen in Figure 1, where for
larger numbers of processors the performance of the LU benchmark for the class B data set is quite
impressive. Unfortunately, as one can see in Figure 2, some applications will need more than 512 KB
of cache if they are to ever reach this point. In this figure, the delivered performance of the SGI
Origin 3000 is very similar to that of the Pentium 4 cluster, even though the peak-speed on a per
processor basis of the cluster 7.5 times greater! The key difference appears to be that the SGI Origin
processors are each equipped with 8 MB of cache, while on the Pentium 4 cluster, each processor is
equipped with only 512 KB of cache. Clearly, as equipped, problems represented by the CG
benchmark would be best run on other platforms.

There is also the question of when using nodes with more than one processor (generally referred to as
SMP [Symmetric Multi-Processor] nodes, how many of the processors should be used? This might
seem to be a silly question, why would one not want to use all of the processors per node? In fact,
when running these benchmarks, an effort was made to run them under production conditions.
Therefore, it is safe to assume that in many cases all of the processors of at least some nodes were
being used. Unfortunately, there are two draw backs to using all of the processors on a node. The first
is that one is competing with the operating system for the attention of at least one processor. For finer

grained applications (especially those written using Unified Parallel C [UPC], High Performance
Fortran [HPF], OpenMP, and SHMEM), one may see improved performance when using N-1
processors per node. A related argument arises when overlapping communication with computation.
In that case, the communication can put additional strain on both a processor and the memory system.

Table 1. Calculating the usable per processor memory bandwidth for a series of hypothetical systems
representative of the current state of the art in system design.

Per processor usable memory bandwidth for loads (MB/sec)
assuming

Number of
processors
per node

Cache line
size (bytes)

Number of
outstanding

cache
misses/prefetch

events (per
processor)

a peak
memory
bandwidth
of 600
MB/sec (150
NS latency -
1200
MB/sec limit
on chip
interface)

a peak
memory
bandwidth
of 1200
MB/sec (200
NS latency-
1200
MB/sec limit
on chip
interface)

a peak
memory
bandwidth
of 2400
MB/sec (250
NS latency -
1200
MB/sec limit
on chip
interface)

a peak
memory
bandwidth
of 4800
MB/sec (300
NS latency -
1200
MB/sec limit
on chip
interface)

1 64 1 427 320 256 213
1 64 2 600 640 512 427
1 64 4 600 1200 1024 853
1 64 8 600 1200 1200 1200
1 64 16 600 1200 1200 1200
1 128 1 600 640 512 427
1 128 2 600 1200 1024 853
1 128 4 600 1200 1200 1200
1 128 8 600 1200 1200 1200
1 128 16 600 1200 1200 1200
2 64 1 300 320 256 213
2 64 2 300 600 512 427
2 64 4 300 600 1024 853
2 64 8 300 600 1200 1200
2 64 16 300 600 1200 1200
4 64 1 150 300 256 213
4 64 2 150 300 512 427
4 64 4 150 300 600 853
8 64 1 75 150 256 213
8 64 2 75 150 300 427

16 64 1 38 75 150 213

Figure 1. An example of limited memory bandwidth hurting the performance of the second processor
on a two processor node until the amount of work per processor is reduced to the point that the
working set fits in the 512 KB cache.

Intel Pentium 4 3.06 GHz (6.12 GFLOPS) Cluster with
Myrinet 2000 Switch (2 PE per node) NAS LU

Benchmark (Class B version 2.4)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

0 100 200 300

Number of Processors

To
ta

l P
er

fo
rm

an
ce

(M
FL

O
PS

)

0
50
100
150
200
250
300
350
400
450
500

Pe
rfo

rm
an

ce
 p

er
 P

E
(M

FL
O

P
S

/P
E

)

Total Performance
Performance per PE

Figure 2. An example of an application whose working set fits in an 8 MB cache, but fails to fit into a
512 KB cache, even for larger numbers of processors.

Cross Platform Performance Comparison for
the NPB Class B CG Benchmark

0

2000

4000

6000

8000

10000

0 200 400 600

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M
FL

O
PS

SGI O3K 512 PE 400
MHz

IBM SP Power3 375
MHz (NH2) single rail
Colony Switch
IBM SP Power4 1.7
GHz dual rail
Federated Switch
Intel Pentium 4
Cluster Myrinet 2000
Intel Compiler

3. System usage policies and performance

System usage polices can affect performance in a variety of ways. This can range from being unable
to schedule a job, or at least unable to get it scheduled in a reasonable amount of time, to having jobs
fail shortly after they start to run, to the more common problem of poor/highly variable levels of
performance. Before continuing on, the author wishes to thank Thomas Kendall, Phillip Matthews,
and the entire staff of the ARL-MSRC for their help in working out solutions to many of these
problems.
Based on this experience, it is recommended that all systems be configured in the following manner:

• The default core dump size should be set to zero. Most users do not want their core dumps and
the process of dumping several (possibly hundreds of) Gigabytes of core can be very
disruptive. At the same time, the hard limit for the core dump size should be sufficiently large
as to support the creation of a core dump when needed.

• The queuing system should not by default initiate a core dump of a user’s application when the
user requests that the job be terminated.

• On some systems the default number for the maximum number of files that a job may have
open may be insufficient to run MPI jobs on larger numbers of processors. Since it may be
difficult for the user to identify what is going wrong, it is suggested that the default value
should be in the range of 1500-2000 files for systems with fewer than 1024 processors. For
larger systems running very large pure MPI jobs (as opposed to hybrid MPI/OpenMP jobs),
one may need to increase the value of this limit to well beyond 2000 files.

• The default queuing policy on systems with 2-4 processors per node should be to assign a job
as many dedicated nodes as possible, even if the job did not request dedicated nodes,
completely filling those nodes before filling up shared nodes.

• The default queuing policy on systems with SMP nodes with 8 or more processors per node
should be to assign a job as many dedicated nodes as possible, even if the job did not request
dedicated nodes, using N-1 processors per node. Any left over processes could then be
mapped to partially filled shared nodes. Only when the system runs out of partially filled
shared nodes should the queuing system make use of the last processor per node. Even then,
one might argue in favor of leaving such processors for use by debug jobs, interactive jobs,
post processing jobs, and high priority jobs that would otherwise be delayed.

• The default memory usage policy on clusters of SMPs (this includes those running UNIX as
well as those running Linux) should be tuned in such a manner as to reduce/eliminate the
potential for paging. At the same time, the hard limits should be set high enough that users
running shared memory and hybrid runs are supported. Provisions should also be made on at
least some systems to support those running serial jobs with oversized memory requirements.

Current DoD HPCMP policies discourage users from “stuffing” the queues with large numbers of
jobs, especially if they are hard to schedule jobs. However, sometimes the presence of these jobs is
the best argument that there is a need to provide support for such jobs. Furthermore, once the
resources have been made available, if the job finishes after just a few hours (not to mention those runs
that may take less than one hour), the site would face being penalized twice. Once for the expansion
factor, and a second time for the low utilization level while the system is being drained. If the queues
filled with some critical mass of jobs requesting similar resources, then at least the low utilization
level can be amortized over a more reasonable level of work. Additionally, one should be able to

eliminate many of the periods of low utilization due to draining by running a significant number of
hard to schedule jobs one after another. This does not mean that the users should have carte blanche to
stuff the queues with an unreasonable number of jobs. As was discovered when submitting the runs
for this study, stuffing queues to the extreme may inadvertently interfere with the normal functioning
of the queuing system.

Up until now, most of what has been discussed applied either solely to clusters of SMPs, or to both
clusters of SMPs and to large SMPs such as the SGI Origin 3000. However, in carrying out this study,
it was observed that certain aspects of the SGI Origin 3000, and presumably other large SMPs, require
special attention. At the ARL-MSRC, most jobs run on the SGI Origin 3000 run in cpu sets
(sometimes call processor sets). In theory this gives these jobs sole access to the processors in their
set. In most cases this helps to reduce the variability in run time that the SGI Origins are notorious for.
Even so, there continued to be a limited number of complaints concerning the variability in run time.
The general wisdom was that for one reason or another the job was run outside of a processor set. At
the very least, such jobs are at an increased risk of moving around the system. For an architecture that
incorporates a Non Uniform Memory Architecture (NUMA), this will almost certainly increase the
memory latency, while decreasing the usable memory bandwidth. Under certain circumstances, jobs
running outside of a processor are also subject to time sharing, which needless to say is highly
undesirable when talking about parallelized applications.

Recent measurements indicate that there are at least two other circumstances in which the performance
of a job is subject to degradation, even when the job is run in a processor set. It appears that if the
system becomes overloaded (the number of active processes exceeds the number of processors), the
performance of all of the jobs on the system can be adversely affected by a factor of two or more. This
can be difficult to deal with if any jobs are allowed to run outside of a processor set. The load factor
may appear to be reasonable, however if any of the processor sets are underutilized, the effect of
running any jobs outside of a processor set in an attempt to improve the apparent utilization level can
be quite unfortunate. The second scenario involves jobs that use significantly more than “their fair
share” of memory. On most clusters, such jobs cannot even run. However, one of the benefits of a
large shared memory system is its support for this type of job. Of course when taken to the extreme,
there is a risk of either paging/or of jobs being unable to run due to a lack of available resources. This
is not what is being discussed here. Rather, the problem appears to be that effectively the SGI Origins
behave as though they have a multi-banked memory system. If some of the banks fill up, the
remaining jobs may inadvertently experience hot spots in the memory system. While this author is
well known for running such jobs from time to time, and is therefore reluctant to recommend that such
jobs be banned, it does appear as though an increased level of prudence would be advisable in the
future. In order to better illustrate these points, Figure 3 shows a frequency count for the ratio of the
worst run time versus the best run time for each of the benchmarks (Class W 1-64 processors), (Class
A, B, C, and D 1-256 processors) on the ARL-MSRC’s 256 processor Pentium 4 cluster. Similarly,
Figure 4 is for the ARL-MSRC’s 1024 processor IBM SP with Power3 (NH2) processors (Class W 1-
64 processors), (Class B and C 1-529 processors), and (Class D 1-1024 processors). Figure 5 is for the
ARL-MSRC’s 512 processor SGI Origin 3000, although only a handful of runs were done using more
than 256 processors. On the ideal system, all of the values should be as close to 1.0 as possible.

Figure 3. The variability in run times on the
Intel Pentium 4 cluster at the ARL-MSRC (0.1
increment binning).

Intel Pentium 4 3.06 GHz (6.12 GFLOPS) Cluster with
Myrinet 2000 Switch (2 PE per node) Summary of the
Frequency Counts for (Worst Time/Best Time) for All

Classes

0.00

50.00

100.00

150.00

200.00

250.00

1.0 1.3 1.6 1.9 2.2 2.5 2.8
>1

0.0

Worst Time/Best Time

Fr
eq

ue
nc

y

Frequency Count for
(Worst Time/Best Time)

Figure 4. The variability in run times on the
IBM SP Power3 (NH2) at the ARL-MSRC (0.1
increment binning).

IBM SP 375 MHz (1.5 GFLOPS) Power3 (NH2) with
Colony Switch (single rail, 16 PE/node) Summary of

the Frequency Counts for (Worst Time/Best Time) for
All Classes

0
20
40
60
80

100
120
140
160

1.0 1.3 1.6 1.9 2.2 2.5 2.8
>1

0.0

Worst Time/Best Time

Fr
eq

ue
nc

y

Frequency Count for
(Worst Time/Best Time)

Figure 5. The variability in run times on the
SGI Origin 3000 at the ARL-MSRC (0.1
increment binning).

512 PE SGI O3K 400 MHz (800 MFLOPS) 64 bit
compilers 16 KB page size Summary of the

Frequency Counts for (Worst Time/Best Time) for All
Classes

0.00
10.00
20.00
30.00
40.00
50.00
60.00

1.0 1.3 1.6 1.9 2.2 2.5 2.8
>1

0.0

Worst Time/Best Time

Fr
eq

ue
nc

y

Frequency Count for
(Worst Time/Best Time)

4. Fine grain parallelism, message passing latency, and performance

One problem that appears to have received little attention in the literature, but which became painfully
obvious when running these benchmarks is the question of what constitutes fine grain parallelism.
Traditionally, programs that are successfully parallelized using PVM or MPI are considered to have a
coarse grain of parallelism. Those using HPF, UPC, or OpenMP have a fine grain of parallelism.
Those parallelized using SHMEM most frequently fall somewhere in between. However, with
increasing processor speeds, many of the NPB runs for classes W, A, and B showed limited scalability
past 128 processors (in some cases past 16-32 processors) on the newer systems. This is a clear
indication that these runs should no longer be considered to be coarse grained. The fault is not with
the runs, nor is it with the systems. Rather, as everything got faster, the time between synchronization
events has shrunk below the threshold for coarse grained runs. This is a clear warning sign for those
running programs parallelized several years ago. It may be possible to run existing programs at the

current levels of performance using ever fewer processors for some time to come. However, if one
expects to run the current problem sizes on the same or larger numbers of processors, then it may be
time to revisit the strategy used to parallelize the programs. This is most likely to be the case with
programs parallelized using either a hybrid programming strategy or a software virtual shared memory
(SHMEM, HPF, UPC, Linda, Co-Array Fortran, Global Arrays, etc.). As processors get faster, it is
easy to see how the bandwidth for interprocessor communication might be able to keep up. However,
the limits on message passing latency seem to be harder to avoid.

7. Conclusions

So far the NPB benchmarks (classes W-D) have been run on four of the largest systems at the ARL-
MSRC. The FT benchmark would not compile with the Intel compiler. Experiments are underway to
compare the performance of runs compiled with the Intel and PGI compilers on the Pentium 4 cluster.
A number of observations and conclusions that were made while running these jobs have been
discussed. It is expected that additional systems will be benchmarked as time permits and that the
results from all of these runs will be published on the web at a future date. It is our hope that others
will undertake similar studies at their sites, and similarly publish their results on the web.

References

1. The NAS Benchmark (NPB) home page can be found at http://www.nas.nasa.gov.
2. Dongara, J. “Linpack Benchmark-Parallel” table for the Linpack Benchmark. Published

electronically at http://www.netlib.org.
3. McCalpin, J. “Equivalent MFLOPS” table for the STREAM Benchmark. Published

electronically at http://www.cs.virginia.edu/stream.
4. Pressel, Daniel M. and Jelani Clay. “Benchmarking the Benchmarks”, ARL-TR-2805.

Published by the U.S. Army Research Laboratory, September 2002.
5. Pressel, Daniel M. “Cache-Based Architectures for High Performance Computing”, ARL-MR-

528. Published by the U.S. Army Research Laboratory, February 2002.
6. Pressel, Daniel M. “Fundamental Limitations on the Use of Prefetching and Stream Buffers

for Scientific Applications”, ARL-TR-2538. Published by the U.S. Army Research
Laboratory, June 2001.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 9

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 10

 1 PROG DIR
 C HENRY
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 DEP PROG DIR
 L DAVIS
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 DISTR CTRS PROJ OFC
 V THOMAS
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 HPC CTRS PROJ MGR
 J BAIRD
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 CHSSI PROJ MGR
 L PERKINS
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 NAVAL RSRCH LAB
 J OSBURN
 CODE 5594
 BLDG A49 RM 15
 WASHINGTON DC 20375-5340

 1 NAVAL RSRCH LAB
 J BORIS
 CODE 6400
 4555 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344

1 USAF WRIGHT-LAB
 B STRANG
 WL/FIMC BLDG 450
 2645 FIFTH ST
 STE 7
 WRIGHT PATTERSON AFB OH
 45433-7913

 1 NAVAL RSRCH LAB
 R RAMAMURTI
 CODE 6410
 4555 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344

1 ARMY AEROFLIGHT DYNAMICS DIR
 R MEAKIN
 M/S 258-1
 MOFFETT FIELD CA 94035-1000

 1 NAVAL RSRCH LAB
 J MCCAFFREY
 HEAD OCEAN DYNAMICS
 PREDICTION BR
 CODE 7320
 STENNIS SPACE CTR MS 39529

2 USAF WRIGHT-LAB
 J SHANG
 WL/FIM
 2645 FIFTH ST
 STE 6

 WRIGHT PATTERSON AFB OH
 45433-7913

1 USAF PHILIPS LAB
 S WIERSCHKE
 OLAC PL/RKFE
 10 EAST SATURN BLVD
 EDWARDS AFB CA 93524-7680

1 NAVAL RSRCH LAB
 D PAPCONSTANTOPOULOS
 CODE 6390
 WASHINGTON DC 20375-5000

1 AIR FORCE RSRCH LAB/DEHE
 R PETERKIN
 3550 ABERDEEN AVE SE
 KIRTLAND AFB NM 87117-5776

1 NAVAL RSRCH LAB
 G HEBURN
 RSCH OCEANOGRAPHER CNMOC
 BLDG 1020 RM 178
 STENNIS SPACE CTR MS 39529

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 11

1 AIR FORCE RSRCH LAB
 INFORMATION DIR
 R LINDERMAN
 26 ELECTRONIC PKWY
 ROME NY 13441-4514

1 SPAWARSYSCEN (D4402)
 R WASILAUSKY
 BLDG 33 RM 0071A
 53560 HULL ST
 SAN DIEGO CA 92152-5001

1 USAE WATERWAYS
 EXPERIMENT ST
 J HOLLAND
 CEWES HV C
 3909 HALLS FERRY RD
 VICKSBURG MS 39180-6199

1 US ARMY CRD&EC
 B PERLMAN
 AMSEL RD C2
 FT MONMOUTH NJ 07703

1 SPACE & NAVAL WARFARE SYS CTR
 K BROMLEY
 CODE D7305 BLDG 606 RM 325
 53140 SYSTEMS ST
 SAN DIEGO CA 92152-5001

1 DEPT CHAIR
 T TEZDUYAR
 MECH ENGR & MTRL SCI
 RICE UNIV MS 321
 6100 MAIN ST
 HOUSTON TX 77005

1 ARMY HIGH PERFORMANCE
 COMPUTING RSRCH CTR
 B BRYAN
 1200 WASHINGTON AVE
 S MINNEAPOLIS MN 55415

1 NAVAL CMD CNTRL &
 OCEAN SURVEILENCE CTR
 L PARNELL
 HPC COORDINATOR 7 DIR
 DOD DISTRIBUTED CTR
 NCCOSC RDTE DIV D3603
 49590 LASSING RD
 SAN DIEGO CA 92152-6148

1 ASSOCIATE DIR
 S MOORE
 INNOVATIVE CMPTG LAB
 CMPTR SCI DEPT
 1122 VOLUNTEER BLVD STE 203
 KNOXVILLE TN 37996-3450

ABERDEEN PROVING GROUND

 16 DIR USARL
 AMSRD ARL CI HC
 D BROWN
 J CLARKE
 P CHUNG
 J GOWENS
 B HENZ
 D HISLEY
 T KENDALL
 P MATTHEWS
 R NAMBURU
 C NIETUBICZ
 R PRABHAKARAN
 D PRESSEL
 D SHIRES
 K SMITH
 R VALISETTY
 C ZOLTANI

 12

INTENTIONALLY LEFT BLANK.

